
Subgrain Formation during Deformation: Physical Origin and
Consequences
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The formation of subgrains in the course of plastic deformation is explained as a result of a trend to
make the deformation easier by locally reducing the number of active slip systems. Local preference
of one slip system changes the crystal orientation with respect to stress (Schmid factor), thus leading
to geometrical softening or hardening. The trend to subgrain formation is treated in the framework
of continuum mechanics as an instability against internal bending for the simple case of a crystal
originally oriented for symmetric double slip. Once formed, the boundaries of the subgrains lead to
hardening as they induce long-range internal back stresses in the interior of the subgrains by forcing
the mobile dislocations to take a bowed configuration. Simple dislocation-based and Cosserat models
are recalled to explain the size-dependent subgrain hardening, where smaller subgrains are stronger.

I. INTRODUCTION between various kinds, such as geometrically necessary and
incidental boundaries. However, all kinds of boundaries areMANY models of plasticity work with average disloca-
similar in that they constitute dislocation networks, whichtion densities that are the same everywhere in the crystal.
evolve during deformation from “thick” walls with highWhile it is certainly a legitimate first step to build a model
dipole content to “thin” essentially two-dimensional (2-D)on this simplifying assumption, such models exclude the
walls, and in that they are associated with misorientations.formation of deformation-induced dislocation structures and
From this point of view, there is no real need for a differencemisorientations within a crystal that are important features of
in nomenclature, except if one wants to differentiate betweenplastic deformation. The formation of misorientations leads to
boundaries of different kinds and physical origin.a structure of crystallites within the deforming grains that

The present article addresses two questions. One is theare bounded by dislocation networks in the form of subgrain
question for the physical origin of the misorientations. Theboundaries or, as deformation proceeds to large strains and
second is for the effect of the boundaries on deformation,the misorientations increase, even by large angle boundaries.
once they have formed.In fact, the buildup of misorientations during deformation has

even led to the method of producing so-called nanocrystalline
II. PHYSICAL ORIGIN OF SUBGRAINmaterials by severe plastic deformation. In the following, we

FORMATIONwill use the term subgrain structure to address the misoriented
structure. This term is established in the field of creep where
stresses are relatively low due to high temperature and the A. Primary-Secondary Hardening
subgrain boundaries come close to ideal small angle bound-

1. Qualitative argumentsaries. However, we do not mean that the subgrain boundaries
In a homogeneously deforming body each volume elementresulting from the dislocation evolution during plastic defor-

would perform the same change of shape. Therefore, theremation are ideal. Due to the fact that the crystal approaches
would be no misfit between the volume elements, and conse-a state of dynamic equilibrium, there is always some distur-
quently, no need for misorientation between neighboringbance of the ideal state. Prolonged annealing after deforma-
elements. This means that deformation must be inhomoge-tion brings the subgrain boundaries into a much more ideal
neous for misorientations to develop.state. The disturbance of the ideal structure increases with

Plastic deformation by dislocation motion is heteroge-decreasing temperature. In cold working, the disturbance is
neous by nature. The very existence of a dislocation lineso large that one does not usually use the term subgrain
represents this heterogeneity. The fact that dislocations needboundary but speaks of cell boundaries, distinguishing
sources for their generation within a crystal is another argu-
ment for heterogeneity. It is well known from observations
of slip lines at the crystal surfaces that dislocations moveR. SEDLÁC̆EK, Research Assistant, is with the Lehrstuhl für Mechanik,
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would not lead to misorientations between neighboring crys-is with the Centre des Matériaux, CNRS, Ecole des Mines de Paris, 91003
tal volumes. Subgrains result from the fact that the slipEvry, France.
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It should be noted that the deviation from homogeneity working. However, the fact that a lower limit exists is
important for the experimental attempts to produce nanocrys-of deformation on each slip system is not very large. If slip
talline materials.was confined to a single slip system in each subgrain the

One point is missing in this chain of arguments that ismisorientation, U, would equal the shear, g, for small strains.
important for the degree of the instability. This is the fact thatThis would mean U 5 0.01 5 0.01/(p /180) deg ' 0.6 deg
the subgrains change their crystal orientation with respect tofor g 5 0.01. However, such misorientation is reached after
stress. The result is a change in the Schmid factors of thestrains that are about one order of magnitude larger. This
active slip systems. Obviously, the instability, that is themeans that deformation is, in fact, relatively homogeneous
tendency to concentrate slip locally to one system withinon each slip system and that the heterogeneous component
an arrangement of compatibly deforming subgrains, willis only a small fraction of the total activity. However, this
increase or decrease depending on whether the Schmid factorsmall fraction has important consequences as is apparent
of the primary system increases or decreases. The geometri-from the subgrain structure itself.
cal softening that is related to an increase in Schmid factorThe driving force behind the “fragmentation” of the crys-
will further enhance the instability, i.e., it will lead to furthertal into a “mosaic” of subgrains has long been unclear.
concentration of slip on the primary system. However, withHowever, there is a simple argument for such a driving force.
the increasing change in subgrain orientation, the geometri-It is related to work hardening. Work hardening results from
cal softening will come to end and turn to geometrical hard-the interaction of dislocations via their stress fields. It is
ening due to decrease of the Schmid factor. This tendencywell known that dislocations of the same slip system with
(which is also responsible for the end of stage I work harden-the same Burgers vector and the same slip plane interact
ing) poses a natural limit to the misorientation to be achievedrelatively weakly. The work-hardening coefficient in stage
from a single primary system. From this point of view, it isI, where single slip dominates, is relatively small. A high
not possible to reach arbitrary large misorientations by uniax-rate of work hardening is found in stage II as soon as second-
ial deformation. In fact, it has been observed that deforma-ary slip becomes active. In this stage, the dislocations lie
tion must follow a certain schedule of passes with differenton different mutually intersecting slip planes. They form
specimen orientations for obtaining large angle boundaries.junctions by recombination and have to intersect their “for-
It is by no means evident that misorientations are continu-est” dislocations during glide. It is this difference in work-
ously increasing during deformation as is reported in manyhardening rates that is used to explain the organized fragmen-
articles on what is called continuous recrystallization.tation of the crystal into subgranular entities. It will be

shown that under these circumstances any disturbance of 2. Quantitative model
the homogeneous deformation will grow rather than vanish, In order to substantiate the qualitative arguments given
thus leading to differences in the change of the shape of the previously, we look at the simple case of a crystal that is
neighboring volume elements. That is, a volume element, orientated for symmetric double slip. Here, the crystal can
which happens to have a predominance of slip on a “primary” choose between two slip systems of the same Schmid factor.
system, will deform faster than its surroundings because it Preference of one system leads to a crystal rotation (for
contains less dislocation forest. This further stimulates the compatible deformation) around a common axis. It has been
primary slip activity. reported by Pantleon and Hansen[1] that the experimentally

However, the predominance addressed previously would observed misorientations can be explained on the basis of
quickly come to an end if the deformation is incompatible. rotations around two perpendicular axes. This would mean

that the real deformation in three dimensions can be obtainedThus, it is necessary to achieve compatible deformation
from a superposition of compatible subgranular deformationin the neighboring volume elements. This can be done by
of the type described previously on two sets of symmetricappropriate choice of the different primary slip systems in
systems with perpendicular rotation axes.the neighboring regions. By virtue of compatibility, these

The model of deformation-induced subgrain formationneighboring regions undergo different lattice rotations, thus
is set up in the framework of classical, continuum crystalconstituting subgrains. Then, the dislocations stored at the
plasticity. It rests on the bifurcation analysis of a crystalboundaries of the regions have the character of geometrically
deforming in plane strain that can be found in the literaturenecessary dislocations. They constitute subgrain boundaries
in many variants, e.g., References 2 through 7. A detailedthat, ideally, are without long-range stresses.
step-by-step analysis of a rate-independent, rigid-plasticAs for the size of the subgrains, one has to note that there
crystal oriented for symmetric double slip has been presentedis a certain extension of the slip zones that decreases with
recently.[8] Here, we are going to review only the main stepsincreasing stress. A subgrain is unlikely to be much smaller
of the analysis.than this distance, which can be approximated as 100bG/s

The material velocity field, v 5 (vx , vy), describing homo-in pure metals. This sets a lower limit to the subgrain size.
geneous deformation of the crystal is disturbed. The pertur-In fact, the average subgrain size (mean linear intercept) is
bation v̂ (x, y) is considered in the form of a planar wave withabout v 5 23bG/s. It has to be noted here that three neigh-
the wave vector (kx , jkx) and an infinitesimal amplitude ṽ.boring subgrain boundaries contain dislocations of like sign.

Thus, the average spacing of the groups of subgrain bound- v̂(x, y) 5 ṽ exp i(kxx 1 jkxy) [1]
aries with dislocations of like sign is of the same order of

The disturbed deformation fulfills constitutive relationsmagnitude as the slip line spacing.
between stress (rate) and strain (rate),The stress dependence means that there is a huge variation

of the steady-state subgrain sizes observed in real life, from ­t(ŝ11 2 ŝ22) 5 Hxx(­xv̂x 2 ­yv̂y) [2]
mm-sized subgrains close to the melting point of pure metals

­tŝ12 5 Hxy(­xv̂y 1 ­yv̂x)down to 100 nm at the high stresses observed during cold
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Fig. 2—The bifurcation map corresponding to Eq. [4] is drawn at the
bottom of the figure and discussed in the text. The LHS of Eq. [4]/s-vs-
j diagrams in the middle are computed at the bold dots in the bifurcation
map. They are scaled differently to capture the decisive qualitative features
of the bifurcation behavior. The sketches at the top symbolize the most
unstable bifurcation modes in the corresponding regimes: subgrain bound-
aries oriented at arctan (j ) 5 90 deg (H1) and arctan (j ) 5 0 deg (P)
relative to the tensile axis (cf. Fig. 1), homogeneous deformation (E below
maximum tensile load), and a shear band inclined at arctan (j ) ' 40 degFig. 1—The symmetric double slip model of a crystal deforming plastically
relative to the tensile axis (H2). The shaded fields help to identify thein plane strain.[4] Geometrical axes coincide with the principal directions
absence of any instability in the corresponding regimes. The ellipticalof the applied stress s. Without lost of generality, we can assume tension
instability in the form of diffuse necking (E above maximum tensile load,in the y and compression in the x direction, cf. Refs. 2, 8, and 13. The
no real j )[3] is not discussed here.term f is the angle between the tensile axis and the slip direction.

where ŝij means a disturbance of the uniform stress field
(volume constancy) of the plastic deformation, one finallysij . The model is termed rate independent, for the flow stress
arrives at the characteristic equation:depends only on the current state of the strain not on the

strain rate. The instantaneous tangent-hardening coefficients, 1Hxy 1
1
2

s2j 4 1 2(2Hxx 2 Hxy)j 2 1 1Hxy 1
1
2

s25 s [4]Hxy and Hxx (Pa), for shearing parallel to the directions of
applied stress and at 45 deg to them, respectively,[3] can be
easily interpreted in terms of crystallographic slip,[4,8] The appearance of instability is related to the existence of

a positive root j 2 of Eq. [4], i.e., to the loss of ellipticity
Hxx 5

h(1 1 q)
2 sin2 2f

, Hxy 5
h(1 2 q) 1 s cos 2f

2 cos22f
[3] of the corresponding governing differential equation.[3] A

positive root appears (and an instability occurs) if the second-
ary hardening is strong enough (q . 1) and/or the geometri-where h and qh are the usual primary and secondary (latent)

hardening coefficients, respectively, and f is the orientation cal softening appears (s cos 2f , 0), cf. Eq. [3]. For the
roots, j, the left-hand side (LHS) of Eq. [4] takes the meaningof the slip systems relative to the tensile axis, Figure 1. The

difference of the applied axial stress components s 5 syy 2 of the critical (bifurcation) stress. The instability is possible
for all js for which the inequality LHS [4] , s is verified.sxx is assumed to be positive (tension in the y and/or com-

pression in the x directions). The term s cos 2f accounts The most unstable bifurcation mode displays the greatest
difference s 2 LHS [4].for the geometrical hardening/softening. The anisotropy of

the hardening behavior (Hxx Þ Hxy) is a necessary prerequi- The stability behavior resulting from the analysis of Eq.
[4] is summarized in Figure 2, showing (a) the bifurcationsite for the appearance of an instability of the homoge-

neous deformation. map in the lower part, (b) the corresponding LHS [4]-vs-j
diagrams in the middle, and (c) sketches symbolizing theAs usual, in the bifurcation analyses, e.g., a buckling

instability of a beam,[9] the stress equilibrium is set up at most unstable deformation modes (if any) in the upper part
of the figure. The case considered is representative of anthe disturbed (i.e., slightly deformed) system. According to

the extension of this concept to continuum, which is due to fcc crystal oriented for symmetric double slip in tension:[4,10]

the inclination of slip planes to tensile axis f 5 35 deg,Biot,[2] the stresses are considered in a system of coordinates
x1Ox2 that rotates as material fibers do, rather than in the Figure 1. The abscissa of the bifurcation map reflects the

effect of geometrical hardening/softening, and the ordinatelaboratory system xOy, cf. Eq. [2]. The compatibility of the
nonhomogeneous deformation is guaranteed by relating the the effect of secondary hardening. An instability can occur

in the hyperbolic (H1, H2), parabolic (P), or even ellipticstress rates in Eq. [2] to the smooth field of material veloci-
ties in Eq. [1]. By accounting also for the incompressibility (E) regime beyond the maximum tensile load (dotted line).
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Simplifying, one may say that the strong latent hardening
is the main cause for the formation of misorientations in the
course of hardening where the macroscopic deformation is
still nominally homogeneous, while the geometrical soften-
ing is mainly responsible for localization into shear bands
(macroscopically nonhomogeneous deformation) when the
hardening coefficient becomes sufficiently small relative to
the applied stress.[3–5,8] Suppose, for example, the ratio
latent-to-active hardening q 5 1.5. The tensile test starts in
the H1 regime, which means the instability responsible for
lattice misorientations is possible from the onset. With the
growing applied stress, s, and falling hardening modulus,
h, we move across the P field into the E one, where the
stabilizing impact of geometrical hardening overwhelms the
destabilizing effect of secondary hardening, until the maxi-
mum tensile load is reached and geometrical softening takes
the upper hand, causing diffuse necking (elliptical instabil-
ity).[3] Finally, localization of deformation takes places in
the H2 regime where the geometrical softening dominates.

Fig. 3—The role played by glide and climb in a local deformation of aNote the js that dominate the particular regimes: j 5 ` in
volume element. To separate the effects of glide and climb, the inclinationH1, j 5 0 in P, and j 5 0.85 in H2. As discussed previously,
of glide planes to the tensile axis f 5 45 deg is considered (Fig. 1). Then,

they are determined by the smallest ratio LHS [4]/s , 1. climb results in shearing parallel to the directions of applied stress, glide
These js determine the characteristic direction arctan (j ) of in shearing at 45 deg to them (i.e., axial deformation in symmetric double

slip; cf. also the role of the hardening coefficients in the constitutive Eq. [2]).the instability in the general form of Eq. [1] and, thus, govern
the appearance of resulting dislocation patterns H1 and P,
respectively, and the direction of the band of localized defor-

understood as being proportional to the rate of change ofmation, H2. In view of the fact that j changes abruptly at
the area of the inserted atomic planes per unit volume causedthe border between H1 and P, it is difficult to tell on the
by climbing dislocations of the i-th slip system. Assuminggrounds of the present stability analysis alone which one (if
for simplicity that there are no sinks for vacancies in theany) would dominate the dislocation pattern in reality.
perfect, infinitely extended single crystal considered, theThe dislocation patterns associated with the instability are
climb deformation can proceed only by exchange of vacan-determined by the dislocation density tensor,[11,12] which is
cies between dislocations: the vacancies emitted by climbingdirectly related to the lattice rotations accompanying the
dislocations of one slip system are absorbed by dislocationsinstability. The diffuse dislocation patterns derived from the
of the other slip system. Such a climb deformation does notvelocity field (Eq. [1]) represent embryonic stages of sub-
contribute to the homogeneous deformation in the symmetricgrain formation.[13,8] It is expected that volume elements
double slip model. In reality, the surface of the crystal orof a common misorientation surrounded by well-defined
grain boundaries can serve as sinks for vacancies, so that aboundaries will develop in the postbifurcation regime from
net deformation by climb occurs. This possibility is notthe continuously distributed misorientations and dislocation
considered here to avoid introduction of complicated bound-patterns predicted by the present linear-stability analysis.
ary conditions, etc. Only the net deformation by climb, dueThis expectation is visualized in Figure 2 (H1, P), which
to exchange of vacancies between dislocations that sets inshows dislocation boundaries constructed at the crests of the
locally as soon as there is a disturbance of the symmetry,computed continuous dislocation density waves. For more
is decisive for the present model.[13,19] This mechanism opensdetails, see References 8 and 13.
up an additional possibility for local plastic shearing (Figure
3). If it is energetically advantageous, it is taken up by theB. Climb-Glide
crystal, which results in a nonhomogeneous plastic flow. The1. Qualitative arguments
fragmentation of the crystal is, then again, a consequence ofIn the preceding rate-independent model of crystal plastic-
the compatibility requirement posed on the disturbedity, the effect of strain rate on the flow stress is neglected.
deformation.This approximation turns out to be applicable to pure metals

For the proposed model to work, it is necessary that glidewhere the work hardening dominates the plastic response.
and climb contribution to the extra nonhomogeneous defor-However, in strongly solute-hardened alloys under creep
mation (perturbation of the homogeneous flow) be compara-conditions where dislocations with solute atmospheres move
ble. Admittedly, it is difficult to believe that the deformationslowly in a viscous manner,[14] the work hardening can be
by climb could be so effective that its contribution could beneglected, while the hardening due to strain rate becomes
comparable in magnitude with that of glide, even in stronglyessential. In these so-called noncell forming materials, defor-
solute-hardened alloys at low stresses and high tempera-mation-induced subgrain structures form at larger strains
tures.* Let us recall in this context an alternative to ourcompared to pure metals.[15,16] Anyway, their origin can be

explained as a mechanical instability as well. The decisive *L. Kubin: private communication, CNRS/ONERA, France, 1999.
role in the corresponding model is played by climb of dislo-
cations.[17] The climb velocity is comparable with the veloc- approach, viz. an earlier work on the effect of nonSchmid

stresses on stability of plastic flow.[20] In this rate-indepen-ity of the viscous glide: both of them are diffusion-
controlled.[18,14,13] The resolved climb-deformation rate is dent model, stability of plastic deformation by single slip
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was investigated. Obviously, an instability due to secondary
hardening, cf. Section II–A, is excluded in such a situation.
Therefore, one expects an instability not to appear before the
hardening coefficient falls to zero or even becomes negative
(softening), cf. the field H2 in Figure 2. However, it was
found that an instability in the course of hardening (positive
hardening coefficient) is possible if the shear strain rate
depends not only on the resolved shear stress, but also on
other (“non-Schmid”) stress components. The proposed
physical interpretation is that certain non-Schmid stresses
drive cross-slip, which enables gliding dislocations to bypass
local obstacles in the slip plane. Note that no net contribution
of cross-slip to deformation was considered. Turning back
to our problem, we see that such an interpretation would be
in accord with the traditional role of climb in creep theories:
deformation is due to glide, climb enables bypassing of
obstacles.[21] It could be worthwhile to pursue this alternative
explanation of the subgrain formation in noncell forming
materials as well. Here, we return to the preceding model,
which assumes comparable glide and climb contributions to
the disturbed extra deformation.

2. Quantitative model
The model is an extension of the standard crystal plasticity. Fig. 4—Stability diagram corresponding to Eq. [8] for different ratios

It was originally sketched by Kratochvı́l and Orlová[17] as between climb and glide viscosity coefficients (bottom). Dislocation pat-
terns corresponding to the instabilities (mg/mc 5 1 and 0.4) are computeda direct application of Biot’s deformation-induced internal-
in the bold dots of the stability diagram (j 5 0 and 0.6) (top). Sincebuckling instability in anisotropic viscous flow,[22,2] then
the tendency to instability is insignificant for mg/mc 5 0, homogeneousadopted into the framework of symmetric double slip and deformation is symbolically shown in this case. See the text for details.

treated as a complementary model to the preceding rate-
independent one.[13,19]

In this model, the plastic deformation is treated as a vis-
the climb deformation can cause shearing parallel to thecous flow. The infinitesimal amplitude ṽ of the disturbance
directions of applied stress, cf. Eq. [6].(Eq. [1]) is considered explicitly time dependent:

The term in parenthesis in Eq. [7] accounts for the geomet-
ṽ(t) 5 v̆ exp (v t) [5] rical softening/hardening, which play the same role as in

the rate-independent model. By considering the incompress-The strain hardening of the rate-independent model, Section ibility of plastic deformation and stress equilibrium formu-II–A, is replaced by strain-rate hardening. Constitutive equa- lated on the disturbed system,[2] one finally arrives at antions relate stress to strain rate: implicit eigenvalue equation for the amplification factor, v:
ŝ11 2 ŝ22 5 mxx(­xv̂x 2 ­yv̂y)

[6] 1vmxy 1
1
2

s2j 4 1 2v (2mxx 2 mxy)j 2 1 1vmxy 1
1
2

s2 5 s
ŝ12 5 mxy(­xv̂y 1 ­yv̂x)

The instantaneous tangent viscosity coefficients mxy and mxx [8]
(Pa s) for shearing parallel to the directions of applied stress

The aim of the stability analysis is to find v as a functionand at 45 deg to them, respectively, can be interpreted in
of the material properties and of the ratio of wavelengths,terms of crystallographic glide and climb.[13,19]

j, of the disturbance (Eq. [5]). The homogeneous deforma-
tion is stable only if v , 0, that is if any perturbation (Eq.

mxx 5
mG

2 sin2 2f
,

[7]
[5]) dies down. In the other case (v . 0), the perturbation
grows, the homogeneous deformation is unstable, and a kind
of deformation-induced structure appears. One should notemxy 5

mGmC

2(mC cos2 2f 1 mG sin2 2f) 11 1
s cos 2f

vmG
2 for completeness that the instability is significant only if

the amplification factor is much greater than the rate of
homogeneous deformation, v À «̇. In such a case, theThe crystallographic glide and climb viscosity coefficients

mG and mC relate the resolved shear stress to the shear strain medium can be treated as being initially at rest rather than
in the state of steady flow.[2] This is what we have donerate and the climb-driving stress to the net strain rate caused

by climb, respectively.[13,19] The climb-driving stress has here. The dependence of v /«̇ on j resulting from Eq. [8]
for ratio mG /mC ' 0.4 (glide slightly easier than climb)been proposed in Reference 13 by requiring that applied

stress, s be work-conjugate to overall strain rate, «̇. One representing Al 5 pct Mg deformed at 30 MPa/573 K[13] is
plotted in Figure 4. The most unstable solution is the onenotes that climb provides the anisotropy (mxx Þ mxy), which

is necessary for the instability to appear. This is best seen possessing the maximum positive v. It corresponds to j '
0.6. The dislocation pattern in the form of closed subgrains isby considering the case of f 5 45 deg: then mxx 5 mG /2

and mxy 5 mC /2, cf. Figure 3. In this special case, only constructed from the disturbance (Eq. [1]) via the dislocation
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density tensor as described in Section II–A and shown in no sense, as it is inconsistent with the well-established pic-
ture of subgrain boundary as a 2-D dislocation network.[31,32]the upper part of Figure 4.

To demonstrate the destabilizing effect of climb, the dia- A solution to the puzzle is that it is not only the deposition
of dislocation segments at the boundaries that creates thegram in Figure 4 is completed by the v /«̇ dependence on j

for ratios mG /mC 5 1 (climb as easy as glide) and mG /mC internal stresses. During plastic deformation, gliding disloca-
tions have to bow between the boundaries that act as obsta-5 0 (no climb at all). In the former case, the instability is

substantially stronger and the dominant j shifts towards 0. In cles to their motion. As a consequence, there is a deficit of
plastic strain near the boundaries that has to be compensatedthe latter case, the instability is insignificant, the deformation

remains homogeneous (strictly speaking, the stability analy- elastically, cf. Reference 33. In this way, internal forward
stresses in the vicinity and at the boundaries are created.sis in the present simple form is not applicable). If in addition

to the absence of climb the orientation f 5 45 deg is consid- Quantitatively, this mechanism contributes moderately to the
internal stresses in cell structures,[34] but it seems to beered, even the tendency to instability would disappear, cf.

Figure 3 and the corresponding discussion. dominant in subgrain structures.[35] It also explains the con-
tinuous internal-stress profile with a maximum at the bound-
aries found by evaluating the dislocation curvature in both
cells and subgrains.[25,31–33] It follows that the effective widthIII. CONSEQUENCES OF SUBGRAIN
of the region with internal forward stresses is distinctly largerFORMATION
than the boundary region itself. It is the former and not the
latter that determines the volume fraction of a “hard” region
entering the interpretation of X-ray results in terms of theA. Long-Range Internal Stresses
composite model.[23,24,29,30] From this description, it is also

1. Qualitative arguments clear that the maximum internal forward stress at the thin
Studies of X-ray line broadening have shown that cell subgrain boundary itself is distinctly larger than the average

walls with high dipole content whose thickness is far larger internal forward stress resulting from the classical version
than the average boundary dislocation spacing are associated of composite model, which assumes a constant value of
with long-range internal stresses.[23,24] To explain the internal internal forward stress in the hard region.[25]

stresses of cell boundaries, it is possible to treat them as The role played by the internal stresses in the plastic
plastically hard regions of a composite-like material, the response of the crept material is twofold: (a) the internal back
soft phase of which is presented by the cell interiors.[25] stresses in subgrain interiors cause kinematic hardening, cf.
Compatibility of the material (elastic plus plastic) deforma- References 36, which is responsible for the decrease of creep
tion requires that the misfit of plastic strain between the two rate in the extended primary stage of creep of pure materials
phases, which is accommodated by dislocation segments where the density of free dislocations is apparently constant,
deposited at the interfaces between the cell boundaries and and (b) the internal forward stresses at subgrain boundaries
interiors, be compensated by elastic deformation, which is enable their intersecting by free dislocations in spite of the
enforced by the long-range internal stresses.[25] Predictions small “forest dislocation” spacing in the boundaries.
of the one-dimensional (1-D) composite model have been
verified by 2-D dislocation mechanics calculations,[26,27] 2. Quantitative model

Implementation of the preceding ideas in a static modelas well as by 2-D continuum-mechanics numerical
calculations.[28] of long-range internal stresses is easy. One can simply

assume the gliding dislocations take up a curved configura-As argued previously, ideal subgrains are free from long-
range internal stresses as the underlying plastic deformation tion, e.g., an elliptical one, in accord with TEM observa-

tions.[33] This causes an elliptic profile of plastic deformationaccompanied by stress-free lattice rotation is compatible, in
other words, the parts of the “mosaic structure” fit perfectly in the subgrains.

Then, upon considering stress equilibrium, strain compati-together. However, studies of X-ray line broadening have
shown that there is only little quantitative change concerning bility, and Hooke’s law, one computes the internal stresses.

This has been done analytically in the composite modelthe internal stresses if one goes from a dislocation cell struc-
ture towards a subgrain structure in pure Cu, by increasing framework,[33,34] as well as numerically in the full continuum

mechanics formulation in two dimensions[37] with qualita-the temperature of deformation at the same stress.[29,30] We
note that the sensitivity of the X-ray technique is not suffi- tively similar results. However, the 2-D formulation[37] has

revealed a strong dependence of the magnitude of internalcient at low stresses. However, the complementary method
of observing bowed dislocation segments at subgrain bound- stresses on the relative orientation of glide planes and sub-

grain boundaries, an effect that cannot be accounted for inaries verifies the existence of high forward stresses at the
boundaries even for high temperatures and relatively low the 1-D framework[25,33] and that deserves further pursuit.

Anyway, the composite-model framework[25] appears tostresses.[31,32] Another result of the X-ray line broadening
studies is a small reduction of the volume fraction of subgrain be a suitable basis for further development of the model,

especially because it allows for analytical solutions. In thisboundaries compared to thick cell walls.[29,30] This is puz-
zling, as a subgrain boundary has a width (spacing up to 1-D isostrain approximation to continuum mechanics, one

requires not only compatibility, but even homogeneity ofwhich the stress field of an ideal boundary extends in the
direction perpendicular to the boundary) that is in the order of material (elastic 1 plastic) shear strain,
the dislocation spacing in the boundaries. Thus, the volume
fraction of ideal subgrain boundaries should be almost negli- g 5 g e(x) 1 gP(x) [9]
gible and also the explanation of internal stresses in terms
of dislocation segments deposited at the interfaces[25] makes On the other hand, one relaxes stress equilibrium by allowing
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for nonhomogeneous shear stress, thus enabling the exis-
tence of internal stresses. Stress equilibrium is fulfilled on
average (Abenga’s law[12,38]), requiring that nonhomoge-
neous shear stress averaged over a period consisting of a
soft subgrain interior, s, and hard boundary, h, equals the
applied shear stress,

1
s 1 h ê

s1h&
t (x)dx 5 t [10]

Increment of plastic shear caused by the displacement, w (x), Fig. 5—Size dependence of subgrain hardening is demonstrated by plotting
the reduced stress profiles in subgrains for various ratios s/l. The rightmostof the mobile dislocations with density, rm, and Burgers
diagram corresponds to steady-state deformation (s!rm ' 20). Here, thevector magnitude, b, follows from the Orowan equation,
dislocations bow relatively easily, so the stress in the subgrain interior
could decrease to the local flow stress (which is assumed to be zero forgP(x) 5 rmbw (x) [11]
simplicity). In the other cases, the flexibility of the dislocations bowing in
the small subgrains determines the response. One notes the volume fractionIn the following, rather than assuming the elliptical shape
f of the material under forward internal stress (shaded). The classical com-of the bowing dislocations,[33] we compute it by considering posite model[25] reappears at s/l 5 `, resulting in f 5 0.01 and the reduced

the equilibrium of forces acting on them: (ii) the Peach– stress ts/t changing abruptly at the boundary from 0 in the subgrain to
Koehler force due to the local shear stress, t (x), and (b) 100 at the boundary; see the text for details.
the self force due to (constant) line tension T ' Gb2. The
equilibrium position of a bowing screw dislocation fulfills
relation

itself is much greater than the applied stress, th/t ' 9 À
1. We note that the classical composite model[25] gives, int (x)b 1 T­2

x w (x) 5 0 [12]
the present case, the volume fraction f 5 fh 5 0.01 and

The second derivative of the dislocation displacement, w (x), stress concentration at the boundary,* th/t 5 100.
follows from linearized dislocation curvature, cf. Ref-

*The athermal stress due to dislocation interactions that would normallyerence 39. Strictly speaking, the linearized model correctly
be tG,r } bG!rm and that would reduce the stress concentration by virtuedescribes only mild bowing of dislocations between the sub- of the rule of mixtures t 5 (1 2 fh)tG,r 1 fhth has been neglected here

grain boundaries (anelasticity). The full-curvature model for simplicity.
using parametric description of dislocation lines,[40] which
is appropriate for plasticity, has been set up, solved numeri-
cally, and compared with the linearized one in Reference

B. Size Dependence of Subgrain Hardening41. The comparison has revealed remarkably satisfying dis-
1. Qualitative argumentstribution of internal stresses resulting from the linearized
The kinematic hardening due to long-range internalmodel, especially if no deposition of dislocation segments

stresses discussed in Section III–A is subgrain-size depen-at the interfaces is possible (as in the case of subgrain bound-
dent. This can be seen, for example, in creep of ferritic steelsaries). Analytical solution of the linearized problem, Eqs.
that inherit fine subgrain structure stemming from the strong[9] to [12], can be found by considering Hooke’s law for the
internal deformation related to the martensitic transforma-elastic shear strain, g e(x) 5 t (x)/G, and suitable boundary
tion in the course of production. In the tertiary stage of creepconditions.[42,43,41] Stresses at the subgrain boundary, th , and
after the minimum of creep rate, most of the microstructurein subgrain interior, ts , result in
parameters are practically saturated, but the subgrains (and
carbides) still grow while the steel softens.[44,45] In general,
the size dependence of flow stress on subgrain size is

th 5

t (s 1 h) cosh 1s
2
!rm2

2

!rm

sinh 1s
2
!rm2 1 h cosh 1s

2
!rm2

,

[13]

reflected by the empirical expression for the stress depen-
dence of subgrain size, w } bG/s.

These findings are in accord with the motto of the general-
ized, Cosserat, or strain-gradient plasticity theories: “smaller
is stronger.”[46–49] Among other things, these theories aimts(x) 5

th cosh (x!rm)

cosh 1s
2
!rm2 at describing the influence of grain size on hardening and

flow stress.[50,51] While the formal description succeeds, and
the experimentally observed size effect is usually correctly
reflected, the proposed physical interpretation in terms ofClearly, the stress in subgrains, ts(x), increases continuously

from the interior to the boundary, where it reaches its maxi- isotropic hardening due to the storage of geometrically nec-
essary dislocations is often questionable. For example, it ismum value, ts (6s/2) 5 th . The reduced shear-stress profile,

ts(x)/t, is plotted in the rightmost diagram of Figure 5 for well known that the precipitation hardening in g 2 g 8 nickel-
based superalloys is due to the bowing of glide dislocationsthe volume fraction of subgrain boundaries, fh 5 h/(s 1 h)

5 0.01. The subgrain size has been estimated as s 5 20bG/ in the soft narrow channels (Orowan stress, kinematic hard-
ening). When modeled by a strain-gradient plasticity theory,s, and the spacing of mobile dislocations as 1/!rm 5 bG/

s. Model material parameters have been taken over from the hardening is related to the storage of geometrically neces-
sary dislocations in the channels (isotropic hardening). SoReference 41. One recognizes that the volume fraction of

material experiencing forward internal stress is about f ' it is true that: “Although dislocation-based arguments are
used as motivation, these theories are phenomenological.”[52]0.23 À 0.01 and that the forward stress at the boundary
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Such discrepancies motivate us to propose a simple Cos-
F 16

s
22 5 2

th

2G
[15]serat theory that is able to account for the size-dependent

kinematic hardening caused by the bowing of dislocations
between subgrain boundaries (or even g 8 precipitates). Let From the lattice rotation resulting from Eq. [14] with bound-
us note that the model of long-range internal stresses pre- ary conditions (Eq. [15]), a density of geometrically neces-
sented in Section III–A is in fact nonlocal: the self-energy sary dislocations (corresponding equivalently to the plastic
(line tension) of dislocations bowing between the plastically strain gradient, cf. Eq. [11]) results.[41] As distinct from the
hard phase introduces a length scale into the continuum conventional strain-gradient plasticity theories, these dislo-
mechanics description. The model can be related directly to cations are not assumed to contribute to isotropic hardening,
the Cosserat model proposed in Reference 41. In doing so, at least in the present single slip model, cf. Reference [53].
the Cosserat intrinsic length scale, Cosserat rotation, and the We conclude that the size-dependent (kinematic) subgrain
corresponding higher order boundary conditions acquire a hardening can be accounted for equivalently—at least in the
concrete physical interpretation. Let us note that in strain simplifying 1-D composite model framework—either by the
gradient plasticity theories, the intrinsic length is usually dislocation model of Section III–A or by the preceding
obtained by a fitting procedure.[46] Physical interpretation of Cosserat model.[41] The relation between the two approaches
higher-order boundary conditions in generalized plasticity is a subject of ongoing investigation. It can shed some light
is in general difficult and a subject of ongoing discus- upon some open questions of nonlocal plasticity theories
sion.[48,49,52] (interpretation of intrinsic length, physical relevance of

higher order boundary conditions, etc.).
2. Quantitative model
In the 1-D composite model, the shear strain g (x), Eq.

[9], reflects the translational degree of freedom of classical IV. CONCLUSIONS
continuum. Cosserat continuum possesses an additional The formation of subgrain structures in the course of
independent-rotational degree of freedom, represented by nominally uniform plastic deformation has been explained
rotation F(x). As a consequence, the stress tensor is no more as a mechanical instability of the type of internal bending.
symmetric and a couple stress appears, which is related to In pure materials, the physical origin of the instability is
Cosserat curvature ­xF(x) by an intrinsic length l (m). This secondary hardening, which is stronger than the primary
renders the theory nonlocal, thus enabling it to account for one. In strongly solid-solution hardened alloys, the climb of
size effects.[47,41]

dislocations plays the destabilizing role. Additionally, the
Let us treat subgrain interior as a 1-D elastic Cosserat stability behavior is in both cases influenced by geometrical

continuum, while subgrain boundaries remain classically effects (changing of Schmid factor), which are mainly
elastic. We still require the homogeneity of material shear responsible for localization in the later stages of deformation.
(Eq. [9]). As shown in Reference [41], one is able to formu- The subgrain boundaries formed present obstacles to the
late a governing equation for the Cosserat rotation, motion of gliding dislocations, which are, thus, forced to

take a bowed configuration. As a consequence, long-rangel 2­2
x F 2 F 5 0 [14]

internal back stresses arise in the subgrains and forward
This equation can be identified with an equation for lattice stresses at the boundaries. The former lead to kinematic
rotation F 5 2g e/2, which results from the dislocation hardening, the latter enable the dislocations to penetrate the
model presented in Section III–A, while the Cosserat intrin- boundaries. It is more difficult for the dislocations to squeeze
sic length appears to correspond to the mean spacing between through small subgrains than through large ones, which
mobile dislocations, g 5 1/!rm,[41]. The size dependence of results in size-effect in the subgrain hardening: smaller sub-
the dislocation model is, thus, reflected by the ratio between grains are harder. This behavior can be alternatively
the characteristic length of deformation field (here the sub- described by a generalized plasticity model with boundary
grain size s 5 w) and the intrinsic length, l (here the spacing conditions for lattice rotation (higher order boundary
between mobile dislocations*), s!rm 5 s/l in Eq. [13]. conditions).

A natural next step in the development of the present
*We note that in the proposed interpretation, the intrinsic length is no ideas is a combination of the model for subgrain formationmaterial parameter, but it varies in the course of plastic deformation as the

with the model of size-dependent subgrain hardening to getdislocation density does.
a model predicting the size of the forming subgrains.

Figure 5 shows the size dependence of the computed stress
profiles for three different ratios, s/l. The natural physical

REFERENCESinterpretation is that the Orowan bowing of gliding disloca-
tions is more difficult in the small subgrains than in large 1. W. Pantleon and N. Hansen: Acta Mater., 2001, vol. 49, pp. 1479-93.

2. M.A. Biot: Mechanics of Incremental Deformations, John Wiley, Newones. Since the stress profiles in subgrains ts(x) are directly
York, NY, 1965.related to the shape of bowing dislocations, cf. Eqs. [11]

3. R. Hill and J.W. Hutchinson: J. Mech. Phys. Solids, 1975, vol. 23,and [9], one can see this effect directly in Figure 5. Without
pp. 239-64.

line tension or in infinitely large subgrains, the dislocation 4. R.J. Asaro: Acta Metal., 1979, vol. 27, pp. 445-53.
model reduces to the classical composite model,[25] and the 5. D. Peirce, R.J. Asaro, and A. Needleman: Acta Metall., 1982, vol. 30,

pp. 1087-1119.size effect disappears.[41]

6. H.M. Zbib and E.C. Aifantis: Res. Mech., 1988, vol. 23, pp. 261-Within the preceding identification, the boundary condi-
77.tions for the Cosserat rotation, i.e., the higher-order boundary 7. J. Kratochvı́l: Scripta Metall. Mater., 1990, vol. 24, pp. 1225-28.

conditions, take the meaning of a requirement for continuity 8. R. Sedlác̆ek, J. Kratochvı́l, and W. Blum: Phys. Status Solidi (a), 2001,
vol. 186, pp. 1-16.of lattice rotation at the interfaces,

326—VOLUME 33A, FEBRUARY 2002 METALLURGICAL AND MATERIALS TRANSACTIONS A
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